A local Paley–Wiener theorem for compact symmetric spaces

نویسنده

  • Gestur Ólafsson
چکیده

The Fourier coefficients of a smooth K-invariant function on a compact symmetric spaceM = U/K are given by integration of the function against the spherical functions. For functions with support in a neighborhood of the origin, we describe the size of the support by means of the exponential type of a holomorphic extension of the Fourier coefficients. 1

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paley-wiener Theorem for Line Bundles over Compact Symmetric Spaces

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter 2: Riemannian Symmetric Spaces and Related Structure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

متن کامل

A Paley–wiener Theorem for Distributions on Reductive Symmetric Spaces

Let X = G/H be a reductive symmetric space and K a maximal compact subgroup of G. We study Fourier transforms of compactly supported K-finite distributions on X and characterize the image of the space of such distributions.

متن کامل

The Paley-wiener Theorem and the Local Huygens’ Principle for Compact Symmetric Spaces

We prove a Paley-Wiener Theorem for a class of symmetric spaces of the compact type, in which all root multiplicities are even. This theorem characterizes functions of small support in terms of holomorphic extendability and exponential type of their (discrete) Fourier transforms. We also provide three independent new proofs of the strong Huygens’ principle for a suitable constant shift of the w...

متن کامل

A Paley-wiener Theorem for the Spherical Laplace Transform on Causal Symmetric Spaces of Rank 1 Nils Byrial Andersen and Gestur Olafsson

We formulate and prove a topological Paley-Wiener theorem for the normalized spherical Laplace transform deened on the rank 1 causal sym

متن کامل

Real Paley-wiener Theorems for the Inverse Fourier Transform on a Riemannian Symmetric Space

The classical Fourier transform Fcl is an isomorphism of the Schwartz space S(Rk) onto itself. The space C∞ c (Rk) of smooth functions with compact support is dense in S(Rk), and the classical Paley-Wiener theorem characterises the image of C∞ c (R k) under Fcl as rapidly decreasing functions having an holomorphic extension to Ck of exponential type. Since Rk is self-dual, the same theorem also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008